Analyzing a series of ligands against malaria through the application of molecular docking, molecular quantum similarity, and reactivity indices

Author:

Morales-Bayuelo AlejandroORCID,Vivas-Reyes Ricardo,Kaya Savas

Abstract

Background The primary goal of this research is to underscore the significance of molecular docking in the context of malaria drug discovery. Molecular docking plays a crucial role in comprehending the interactions between prospective drugs and the target proteins found in Plasmodium parasites. The study delves into the docking interactions of various compounds, emphasizing the necessity of stabilizing the active site to formulate potent and selective drugs. Methods The research focuses on highlighting compound-specific interactions with residues, stressing the importance of stabilizing the active site to design drugs tailored to specific target proteins. Inhibiting the function of these target proteins disrupts the life cycle of the malaria parasite. Quantum Similarity Analysis, utilizing Overlap and Coulomb operators, is employed to identify electronic similarities. The resulting quantum similarity values guide subsequent chemical reactivity analysis. Global reactivity indices such as chemical potential, hardness, softness, and electrophilicity contribute to drug design by showcasing compound-specific indices that underscore the significance of stability and electrophilicity. Fukui functions are utilized to visualize regions for stabilization, providing insights crucial for potential malaria treatment. Results The enhancement of drug-target binding affinity is observed through stabilizing interactions in the active site. Understanding electrophilicity at the active site emerges as a critical factor in drug design and selectivity. The rational manipulation of electrophilic interactions holds promise for developing potent and selective drugs against malaria. Consequently, the integration of molecular docking, quantum similarity analysis, and chemical reactivity indices offers a comprehensive approach to malaria drug discovery. Conclusions The study identifies potential lead compounds, emphasizing the crucial role of stabilizing the active site. Additionally, it sheds light on electronic considerations vital for the design of effective and resistance-resistant drugs. The insights provided by Fukui functions into regions susceptible to -H bond formation make these compounds promising candidates for malaria treatment.

Funder

Tecnologico

Publisher

F1000 Research Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3