Effect of microfluidic rectangular microelectrode geometry on bioparticles manipulation in dielectrophoretic application

Author:

Shee Zuriel Da En,Mhd Noor Ervina Efzan BintiORCID,Ahmad Kayani Aminuddin Bin,Abd Rahman Noor Ziela Binti

Abstract

Background: Microfluidic cell manipulation techniques have been continually developed and integrated into miniature chips as a so-called lab-on-a-chip (LOC) platform for high-throughput bioassays. Among the various mechanisms of bioparticles manipulation by electrically induced forces, dielectrophoresis (DEP) has been regarded as the most promising technique utilized in microfluidic systems. Into the micro- to nano-scale level of DEP configuration, the common challenges of undesirable side effects such as electrohydrodynamic effects, joule heating, and electrolysis that may occur in the microfluidic system has always been a hurdle which would severely limit the DEP performance. Methods: A numerical simulation study was performed on a versatile capability of a rectangular type of dielectrophoresis microelectrode with different parametric design configuration variables (channel height: 20-50 µm; electrode width 20-100 µm; electrode spacing 5-50 µm). Results: Numerical study results have shown that the ideal dimension range of design configuration for optimum DEP performance have been identified to be 40µm in channel height, 20-40 µm in electrode width and 5-15µm in electrode spacing, further increasing of the dimensions have shown a decrease in DEP performance consequently abridged the bioparticle manipulation. Conclusion: This investigation of the parametric design of the rectangular geometry microelectrode has provided necessary insight to the microelectrode design information and parametric considerations for optimum DEP device fabrication and enhancement.

Funder

Ministry of Higher Education, Malaysia

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3