Increased growth temperature and vitamin B12 supplementation reduces the lag time for rapid pathogen identification in BHI agar and blood cultures

Author:

Ali Jawad,Joshi Mukund,Ahmadi Asal,Strætkvern Knut Olav,Ahmad RafiORCID

Abstract

Background: The rapid diagnostics of pathogens is essential to prescribe appropriate and early antibiotic therapy. The current methods for pathogen detection require the bacteria to grow in a culture medium, which is time-consuming. This increases the mortality rate and the global burden of antimicrobial resistance. Culture-free detection methods are still under development and are not used in the clinical routine. Therefore decreasing the culture time for accurate detection of infection and resistance is vital for diagnosis. Methods: In this study, we wanted to investigate easy-to-implement factors (in a minimal laboratory set-up), including inoculum size, incubation temperature, and additional supplementation (e.g., vitamin B12 and trace metals), that can significantly reduce the lag time (tlag). These factors were arranged in simple two-level factorial designs using Gram-positive (Escherichia coli and Pseudomonas aeruginosa) and Gram-negative (Staphylococcus aureus and Bacillus subtilis) bacteria, including clinical isolates with known antimicrobial resistance profiles. Blood samples spiked with a clinical isolate of E. coli CCUG17620 were also tested to see the effect of elevated incubation temperature on bacterial growth in blood cultures. Results: We observed that increased incubation temperature (42°C) along with vitamin B12 supplementation significantly reduced the tlag (10 – 115 minutes or 4% - 49%) in pure clinical isolates and blood samples spiked with E. coli CCUG17620. In the case of the blood sample, PCR results also detected bacterial DNA after only 3h of incubation and at three times the CFU/mL. Conclusions: Enrichment of bacterial culture media with growth supplements such as vitamin B12 and increased incubation temperature can be a cheap and rapid method for the early detection of pathogens. This is a proof-of-concept study restricted to a few bacterial strains and growth conditions. In the future, the effect of other growth conditions and difficult-to-culture bacteria should be explored to shorten the lag phase.

Funder

Inland Norway University of Applied Sceinces

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3