Abstract
Ionosphere is the highest contributor of positional error in Global Navigation Satellite System (GNSS) owing to the trans-ionospheric signal delay, distortion and possible outage. Equatorial and Low latitudinal ionosphere experiences frequent perturbations in plasma density most of which is due to the presence of Equatorial Plasma Bubbles (EPBs). In order to improve positional and navigational precision of GNSS signals, EPBs must be identified and corrected. EPBs begin to manifest post-sunset and continue to thrive past midnight. This paper proposes a Rate of TEC Index (ROTI) based EPB identifier using single frequency GNSS receiver data. GNSS data has been collected from the archives of Scripps Orbit and Permanent Array Center (SOPAC). The raw data has been downloaded from the global continuous network station, IISC, located at Bangalore (13.0219°N, 77.5671°E) in Receiver Independent Exchange (RINEX) format. Analysis of EPB occurrence has been carried out for six consecutive years in the second half of the 24th solar cycle (2014-2019). The results show a clear surge in the number of EPBs identified in the course of equinoxes.
Subject
General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine