Leveraging Quadratic Polynomials in Python for Advanced Data Analysis

Author:

Sipakov RostyslavORCID,Voloshkina OlenaORCID,Kovalova Anastasiia

Abstract

This research explores the application of quadratic polynomials in Python for advanced data analysis. The study demonstrates how quadratic models can effectively capture nonlinear relationships in complex datasets by leveraging Python libraries such as NumPy, Matplotlib, scikit-learn, and Pandas. The methodology involves fitting quadratic polynomials to the data using least-squares regression and evaluating the model fit using the coefficient of determination (R-squared). The results highlight the strong performance of the quadratic polynomial fit, as evidenced by high R-squared values, indicating the model’s ability to explain a substantial proportion of the data variability. Comparisons with linear and cubic models further underscore the quadratic model’s balance between simplicity and precision for many practical applications. The study also acknowledges the limitations of quadratic polynomials and proposes future research directions to enhance their accuracy and efficiency for diverse data analysis tasks. This research bridges the gap between theoretical concepts and practical implementation, providing an accessible Python-based tool for leveraging quadratic polynomials in data analysis.

Funder

CoastalQuant, Inc.

Publisher

F1000 Research Ltd

Reference31 articles.

1. Performance assessment and modeling of routing protocol in vehicular ad hoc networks using statistical design of experiments methodology: a comprehensive study.;S Ajjaj;Appl. Syst. Innov.,2022

2. Python Data Analysis and Regression Plots of Wear and Hardness Characteristics of Laser Cladded Ti and TiB2 Nanocomposites on Steel Rail.;V Aladesanmi;2021 IEEE 12th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT).,2021

3. multiplierzv2.0: a python-based ecosystem for shared access and analysis of native mass spectrometry data.;W Alexander;Proteomics.,2017

4. Stock market prediction with gaussian naïve bayes machine learning algorithm.;E Ampomah;Informatica.,2021

5. Curvature-continuous 3d path-planning using qpmi method.;S Chang;Int. J. Adv. Robot. Syst.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3