Minimum work associated with separating nitrogen from air: An exergy analysis

Author:

Rinker GarrettORCID

Abstract

Background Nitrogen is essential for a variety of industries, including heat treatment, laser cutting, fire protection, and food packaging. Many companies in these industries obtain nitrogen via on-premises air separation processes. The three main processes for separating nitrogen from ambient air are cryogenic distillation, membrane separation, and pressure-swing adsorption (PSA). Improvements to these processes will likely focus on increasing efficiency, resulting in reduced environmental impact owing to less electrical power demand and opportunities for economic incentives. Regardless of the process utilized, a minimum theoretical amount of work input is required to obtain nitrogen gas at different pressures and concentrations compared to ambient conditions. Methods An equation was derived to evaluate the total exergy (including thermo-mechanical and chemical exergy) of product and exhaust mixtures resulting from air separation, indicating the minimum theoretical work input as a function of the product pressure, purity, and process recovery rate. This analysis considered an air separation system as a black box, with the input, output, and exhaust assumed to be ideal gas mixtures of nitrogen and oxygen at 15°C. The analysis applies to cryogenic distillation if the product and exhaust mixtures return to the gas phase. Results In general, the minimum required work input increases with product purity and recovery rate. Plots of minimum theoretical work versus product purity and recovery rate were made for two product pressures (atmospheric and 800 kPa) to show the behavior of the derived equation. Conclusions The analysis allows for direct efficiency (based on the second law of thermodynamics) comparisons between existing processes and future technological innovations in the field of air separation. Actual air separation systems have low efficiencies compared to ideal systems; actual PSA systems were estimated to have second law efficiencies of 5.5–11.2%. Therefore, there is great potential for improvements to current air separation systems.

Publisher

F1000 Research Ltd

Reference19 articles.

1. Process of Producing Low Temperatures, the Liquefaction of Gases, and the Separation of the Constituents of Gaseous Mixtures.;C Linde;US Patent 727,650, 1903.

2. Producing nitrogen via pressure swing adsorption.;S Ivanova;Chem. Eng. Prog.,2012

3. Analysis of Cooler Performance in Air Supply Feed for Nitrogen Production Process Using Pressure Swing Adsorption (PSA) Method.;A Syakdani;J. Phys. Conf. Ser.,2019

4. Comparative Evaluation of Cryogenic Air Separation Units from the Exergetic and Economic Points of View.;S Tesch;Low-Temperature Technologies.,2019

5. Performance determination of high-purity N2-PSA-plants.;A Marcinek;Adsorption.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3