SARS-CoV-2-ORF3a variant Q57H reduces its pro-apoptotic activity in host cells

Author:

Landherr Maria,Polina Iuliia,Cypress Michael W.,Chaput IsabelORCID,Nieto BridgetORCID,Jhun Bong SookORCID,O-Uchi JinORCID

Abstract

Background Mutations in the viral genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can enhance its pathogenicity by affecting its transmissibility, disease severity, and overall mortality in human populations. In addition to mutations within the coding region of SARS-CoV-2 structural proteins, there have been reports of mutations in other SARS-CoV-2 proteins that affect virulence, such as open reading frame 3a (ORF3a), which is involved in viral replication. The expression of ORF3a in host cells activates cell death signaling, leading to tissue damage, which affects the severity of COVID-19. The ORF3a-Q57H variant is the most frequent and recurrent variant of ORF3a and is likely associated with increased transmissibility but lower mortality in the 4th epidemic wave of COVID-19 in Hong Kong. Computational structural modeling predicted that the Q57H variant destabilizes the protein structure of ORF3a, which may result in reduced protein expression in human cells. However, it is still unknown how this mutation affects ORF3a protein function and, if so, whether it can change the severity of host cell damage. Methods Plasmids carrying SARS-CoV-2-ORF3a from Wuhan-Hu-1 strain (i.e., wild-type; WT) and its variant Q57H were transiently transfected into HEK293T cells and used for biochemical and cell biological assays. Results SARS-CoV-2-ORF3a-Q57H variant exhibits higher protein expression than WT, but ORF3a-Q57H expression results in less apoptosis in host cells compared to WT via lower activation of the extrinsic apoptotic pathway. Conclusion The relatively mild phenotype of the SARS-CoV-2-ORF3a-Q57H variant may result from alterations to ORF3a function by this mutation, rather than its protein expression levels in host cells.

Funder

National Heart, Lung, and Blood Institute

American Heart Association

Institute of Engineering in Medicine at University of Minnesota

Office of Academic Clinical Affairs at University of Minnesota

Publisher

F1000 Research Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3