Characterizing gene expression in an in vitro biomechanical strain model of joint health
-
Published:2022-03-10
Issue:
Volume:11
Page:296
-
ISSN:2046-1402
-
Container-title:F1000Research
-
language:en
-
Short-container-title:F1000Res
Author:
Hung Anthony,Housman Genevieve,Briscoe Emilie A.,Cuevas Claudia,Gilad Yoav
Abstract
Background: Both genetic and environmental factors appear to contribute to joint health and disease. For example, pathological levels of biomechanical stress on joints play a notable role in initiation and progression of osteoarthritis (OA), a common chronic degenerative joint disease affecting articular cartilage and underlying bone. Population-level gene expression studies of cartilage cells experiencing biomechanical stress may uncover gene-by-environment interactions relevant to human joint health. Methods: To build a foundation for population-level gene expression studies in cartilage, we applied differentiation protocols to develop an in vitro system of chondrogenic cell lines (iPSC-chondrocytes). We characterized gene regulatory responses of three human iPSC-chondrocyte lines to cyclic tensile strain treatment. We measured the contribution of biological and technical factors to gene expression variation in this system. Results: We identified patterns of gene regulation that differ between strain-treated and control iPSC-chondrocytes. Differentially expressed genes between strain and control conditions are enriched for gene sets relevant to joint health and OA. Furthermore, even in this small sample, we found several genes that exhibit inter-individual expression differences in response to mechanical strain, including genes previously implicated in OA. Conclusions: Expanding this system to include iPSC-chondrocytes from a larger number of individuals will allow us to characterize and better understand gene-by-environment interactions related to joint health.
Funder
Achievement Rewards for College Scientists Foundation
National Institutes of Health
Publisher
F1000 Research Ltd
Subject
General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献