Predicting gene expression changes upon epigenomic drug treatment

Author:

Agrawal PiyushORCID,Gopalan Vishaka,Hannenhalli Sridhar

Abstract

Background Tumors are characterized by global changes in epigenetic modifications such as DNA methylation and histone modifications that are functionally linked to tumor progression. Accordingly, several drugs targeting the epigenome have been proposed for cancer therapy, notably, histone deacetylase inhibitors (HDACi) such as vorinostat and DNA methyltransferase inhibitors (DNMTi) such as zebularine. However, a fundamental challenge with such approaches is the lack of genomic specificity, i.e., the transcriptional changes at different genomic loci can be highly variable, thus making it difficult to predict the consequences on the global transcriptome and drug response. For instance, treatment with DNMTi may upregulate the expression of not only a tumor suppressor but also an oncogene, leading to unintended adverse effect. Methods Given the pre-treatment transcriptome and epigenomic profile of a sample, we assessed the extent of predictability of locus-specific changes in gene expression upon treatment with HDACi using machine learning. Results We found that in two cell lines (HCT116 treated with Largazole at eight doses and RH4 treated with Entinostat at 1µM) where the appropriate data (pre-treatment transcriptome and epigenome as well as post-treatment transcriptome) is available, our model distinguished the post-treatment up versus downregulated genes with high accuracy (up to ROC of 0.89). Furthermore, a model trained on one cell line is applicable to another cell line suggesting generalizability of the model. Conclusions Here we present a first assessment of the predictability of genome-wide transcriptomic changes upon treatment with HDACi. Lack of appropriate omics data from clinical trials of epigenetic drugs currently hampers the assessment of applicability of our approach in clinical setting.

Funder

National Cancer Institute

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference25 articles.

1. Epigenetics, cellular memory and gene regulation.;S Henikoff;Curr. Biol.,2016 Jul 25 cited 2023 Jul 17

2. The cancer epigenome: Concepts, challenges, and therapeutic opportunities.;M Dawson;Science.,2017 Mar 17 cited 2023 Jul 17

3. Targeting the cancer epigenome for therapy.;P Jones;Nat. Rev. Genet.,2016 Oct 1 cited 2023 Jul 17

4. DNA demethylating antineoplastic strategies: a comparative point of view.;S Amatori;Genes Cancer.,2010 cited 2023 Jul 17

5. Drugging the epigenome in the age of precision medicine.;T Feehley;Clin. Epigenetics.,2023 Dec 1 cited 2023 Jul 17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3