Automated detection of over- and under-dispersion in baseline tables in randomised controlled trials

Author:

Barnett AdrianORCID

Abstract

Background: Papers describing the results of a randomised trial should include a baseline table that compares the characteristics of randomised groups. Researchers who fraudulently generate trials often unwittingly create baseline tables that are implausibly similar (under-dispersed) or have large differences between groups (over-dispersed). I aimed to create an automated algorithm to screen for under- and over-dispersion in the baseline tables of randomised trials. Methods: Using a cross-sectional study I examined 2,245 randomised controlled trials published in health and medical journals on PubMed Central. I estimated the probability that a trial's baseline summary statistics were under- or over-dispersed using a Bayesian model that examined the distribution of t-statistics for the between-group differences, and compared this with an expected distribution without dispersion. I used a simulation study to test the ability of the model to find under- or over-dispersion and compared its performance with an existing test of dispersion based on a uniform test of p-values. My model combined categorical and continuous summary statistics, whereas the uniform test used only continuous statistics. Results: The algorithm had a relatively good accuracy for extracting the data from baseline tables, matching well on the size of the tables and sample size. Using t-statistics in the Bayesian model out-performed the uniform test of p-values, which had many false positives for skewed, categorical and rounded data that were not under- or over-dispersed. For trials published on PubMed Central, some tables appeared under- or over-dispersed because they had an atypical presentation or had reporting errors. Some trials flagged as under-dispersed had groups with strikingly similar summary statistics. Conclusions: Automated screening for fraud of all submitted trials is challenging due to the widely varying presentation of baseline tables. The Bayesian model could be useful in targeted checks of suspected trials or authors.

Funder

National Health and Medical Research Council

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3