Predicting infection with COVID-19 disease using logistic regression model in Karak City, Jordan

Author:

Khaleel AnasORCID,Abu Dayyih WaelORCID,AlTamimi Lina,Dalaeen LianaORCID,Zakaraya Zainab,Ahmad Alhareth,Albadareen BakerORCID,Elbakkoush Abdallah AhmedORCID

Abstract

Background: On March 2020, World Health Organization (WHO) labeled coronavirus disease 2019 (COVID-19) as a pandemic. COVID-19 has rapidly increased in Jordan which resulted in the announcement of the emergency state on March 19th, 2020. Despite the variety of research being reported, there is no agreement on the variables that predict COVID-19 infection. This study aimed to test the predictors that probably contributed to the infection with COVID-19 using a binary logistic regression model. Methods: Based on data collected by Google sheet of COVID-19 infected and non-infected persons in Karak city, analysis was applied to predict COVID-19 infection probability using a binary logistic regression model. Results: A total of 386 participants have completed the questionnaire including 323 women and 63 men. Among the participants 295 (76.4%) were aged less than or equal 45 years old, and 91 (23.6%) were aged over 45 years old. Among the 386 participants a total of 275 were infected with COVID-19. The LR chi-square test was used to analyze every demographic characteristic (sex, age, job, smoking, chronic disease, yearly flu injection) in this study to find predictors of the likelihood of COVID-19 infection. The findings indicate that the participants' sex and age are the most important demographic determinants of infection. Cox & Snell R Square (R2 = 0.028) and Nagelkerke R Square (R2 = 0.039) indicators was used to measure model fineness with significant P-value < 0.05. Conclusions: Given a person's age and sex, the final model presented in this study can be used to calculate the probability of infection with COVID-19 in Karak city. This could help aid health-care management and policymakers in properly planning and allocating health-care resources.

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3