Neural crest cell-placodal neuron interactions are mediated by Cadherin-7 and N-cadherin during early chick trigeminal ganglion assembly

Author:

Halmi Caroline A.,Wu Chyong-Yi,Taneyhill Lisa A.ORCID

Abstract

Background: Arising at distinct positions in the head, the cranial ganglia are crucial for integrating various sensory inputs. The largest of these ganglia is the trigeminal ganglion, which relays pain, touch and temperature information through its three primary nerve branches to the central nervous system. The trigeminal ganglion and its nerves are composed of derivatives of two critical embryonic cell types, neural crest cells and placode cells, that migrate from different anatomical locations, coalesce together, and differentiate to form trigeminal sensory neurons and supporting glia. While the dual cellular origin of the trigeminal ganglion has been known for over 60 years, molecules expressed by neural crest cells and placode cells that regulate initial ganglion assembly remain obscure. Prior studies revealed the importance of cell surface cadherin proteins during early trigeminal gangliogenesis, with Cadherin-7 and neural cadherin (N-cadherin) expressed in neural crest cells and placode cells, respectively. Although cadherins typically interact in a homophilic (i.e., like) fashion, the presence of different cadherins on these intermingling cell populations raises the question as to whether heterophilic cadherin interactions may also be occurring during initial trigeminal ganglion formation, which was the aim of this study. Methods: To assess potential interactions between Cadherin-7 and N-cadherin, we used biochemistry and innovative imaging assays conducted in vitro and in vivo, including in the forming chick trigeminal ganglion. Results: Our data revealed a physical interaction between Cadherin-7 and N-cadherin. Conclusions: These studies identify a new molecular basis by which neural crest cells and placode cells can aggregate in vivo to build the trigeminal ganglion during embryogenesis.

Funder

National Institutes of Health

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference47 articles.

1. Vertebrate Sensory Ganglia: Common and Divergent Features of the Transcriptional Programs Generating Their Functional Specialization.;S Vermeiren;Front. Cell Dev. Biol.,2020

2. Cranial Nerves IX, X, XI, and XII.;P Gillig;Psychiatry (Edgmont).,2010

3. The Trigeminal (V) and Facial (VII) Cranial Nerves: Head and Face Sensation and Movement.;P Gillig;Psychiatry (Edgmont).,2010

4. The trigeminal system: an advantageous experimental model for studying neuronal development.;A Davies;Development.,1988

5. On the maxillary nerve.;H Higashiyama;J. Morphol.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3