Implementation of Chernobyl optimization algorithm based feature selection approach to predict software defects

Author:

Anand KunalORCID,Jena Ajay Kumar,Das Himansu

Abstract

Background Software defects can have catastrophic consequences. Therefore, fixing these defects is crucial for the evolution of software. Software Defect Prediction (SDP) enables developers to investigate unscramble faults in the inaugural parts of the software progression mechanism. However, SDP faces many challenges, including the high magnitude of attributes in the datasets, which can degrade the prognostic performance of a defect forecasting model. Feature selection (FS), a compelling instrument for overcoming high dimensionality, selects only the relevant and best features while carefully discarding others. Over the years, several meta-heuristic algorithms such as the Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE), and Ant Colony Optimization (ACO) have been used to develop defect prediction models. However, these models suffer from several drawbacks, such as high cost, local optima trap, lower convergence rate, and higher parameter tuning. To overcome the above shortcomings, this study aims to develop an innovative FS technique, namely, the Chernobyl Optimization Algorithm (FSCOA), to unwrap the most informative features that can produce a precise prediction model while minimizing errors. Methods The proposed FSCOA approach mimicked the process of nuclear radiation while attacking humans after an explosion. The proposed FSCOA approach was combined with four widely used classifiers, namely Decision Tree (DT), K-nearest neighbor (KNN), Naive Bayes (NB), and Quantitative Discriminant Analysis (QDA), to determine the finest attributes from the SDP datasets. Furthermore, the accuracy of the recommended FSCOA method is correlated with existing FS techniques, such as FSDE, FSPSO, FSACO, and FSGA. The statistical merit of the proposed measure was verified using Friedman and Holm tests. Results The experimental findings showed that the proposed FSCOA approach yielded the best accuracy in most cases and achieved an average rank of 1.75, followed by the other studied FS approaches. Furthermore, the Holm test showed that the p-value was lower than or equivalent to the value of α/(A-i), except for the FSCOA and FSGA and FSCOA and FSACO models. Conclusion The experimental findings showed that the prospective FSCOA procedure eclipsed alternative FS techniques with higher accuracy in almost all cases while selecting optimal features.

Funder

Kalinga Institute of Industrial Technology

Publisher

F1000 Research Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3