Diurnal small RNA expression and post-transcriptional regulation in young and old Drosophila melanogaster heads

Author:

Fey Rosalyn M.ORCID,Chow Eileen S.,Gvakharia Barbara O.,Giebultowicz Jadwiga M.,Hendrix David A.ORCID

Abstract

Background: MicroRNAs are a class of small (~22nt) endogenous RNAs that regulate target transcript expression post-transcriptionally. Previous studies characterized age-related changes in diurnal transcript expression but it is not understood how these changes are regulated, and whether they may be attributed in part to changes in microRNA expression or activity with age. Diurnal small RNA expression changes with age were not previously studied. Methods: To interrogate changes in small RNA expression with age, we collected young (5 day) and old (55 day) Drosophila melanogaster around-the-clock and performed deep sequencing on size-selected RNA from whole heads. Results: We found several microRNAs with changes in rhythmicity after aging, and we investigated microRNAs which are differentially expressed with age. We found that predicted targets of differentially expressed microRNAs have RNA-binding and transcription factor activity. We used a previously published method to identify mRNA transcripts which show evidence of microRNA targeting that is altered after aging, and found several that are involved in muscle development and maintenance. Finally, we identified novel microRNAs using the random-forest-based method miRWoods, which surprisingly also discovered transfer RNA-derived fragments. Conclusions: We showed a decrease in global microRNA expression and a corresponding increase in piRNA expression during aging. We also found an increase in rhythmicity of Drosophila small RNAs during aging, including microRNAs, piRNA clusters, and novel transfer RNA-derived fragments. To our knowledge this is the first study examining diurnal small RNA expression around the clock in young and old Drosophila, and as such it paves the way for future research on changes in small RNA regulatory molecules in the context of aging.

Funder

National Institute of Aging of NIH

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3