Potential business model for a European vaccine R&D infrastructure and its estimated socio-economic impact

Author:

Jungbluth StefanORCID,Martin WilliamORCID,Slezak Monika,Depraetere Hilde,Guzman Carlos A.ORCID,Ussi Anton,Morrow David,Van Heuverswyn Fran,Arnouts SvenORCID,Carrondo Manuel J. T.,Olesen Ole,Ottenhoff Tom H.M.,Dockrell H. M.,Ho Mei Mei,Dobly Alexandre,Christensen Dennis,Segalés Joaquim,Laurent Fabrice,Lantier Frédéric,Stockhofe-Zurwieden Norbert,Morelli Francesca,Langermans Jan A.M.ORCID,Verreck Frank A.W.,Le Grand Roger,Sloots Arjen,Medaglini Donata,Lawrenz Maria,Collin Nicolas

Abstract

Background Research infrastructures are facilities or resources that have proven fundamental for supporting scientific research and innovation. However, they are also known to be very expensive in their establishment, operation and maintenance. As by far the biggest share of these costs is always borne by public funders, there is a strong interest and indeed a necessity to develop alternative business models for such infrastructures that allow them to function in a more sustainable manner that is less dependent on public financing. Methods In this article, we describe a feasibility study we have undertaken to develop a potentially sustainable business model for a vaccine research and development (R&D) infrastructure. The model we have developed integrates two different types of business models that would provide the infrastructure with two different types of revenue streams which would facilitate its establishment and would be a measure of risk reduction. For the business model we are proposing, we have undertaken an ex ante impact assessment that estimates the expected impact for a vaccine R&D infrastructure based on the proposed models along three different dimensions: health, society and economy. Results Our impact assessment demonstrates that such a vaccine R&D infrastructure could achieve a very significant socio-economic impact, and so its establishment is therefore considered worthwhile pursuing. Conclusions The business model we have developed, the impact assessment and the overall process we have followed might also be of interest to other research infrastructure initiatives in the biomedical field.

Funder

Horizon 2020

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3