Evaluation of the potential defensive strategy against Influenza A in cell line models

Author:

Antonova EkaterinaORCID,Glazova Olga,Gaponova Anna,Eremyan AykazORCID,Grebenkina Natalya,Zvereva Svetlana,Volkova Natalya,Volchkov Pavel

Abstract

Background: Influenza virus can cause both seasonal infections and unpredictable pandemics. Rapidly evolving avian H5N1 and  H7N9 viruses have a potential pandemic threat for humans. Since avian Influenza can be transmitted by domestic birds, serving as a key link between wild birds and humans, an effective measure to control the influenza transmission would be eradication of the infection in poultry. It is known that the virus penetrates into the cell through binding with the terminal oligosaccharides - sialic acids (SA) - on the cell surfaces. Removal of SA might be a potential antiviral strategy. An approach to developing chicken lines that are resistant to influenza viruses could be the creation of genetically modified birds. Thus it is necessary to select a gene that provides defense to influenza. Here we have expressed in cells a range of exogenous sialidases and estimated their activity and specificity towards SA residues. Methods: Several bacterial, viral and human sialidases were tested. We adopted bacterial sialidases from Salmonella and Actinomyces for expression on the cell surface by fusing catalytic domains with transmembrane domains. We also selected Influenza A/PuertoRico/8/34/H1N1 neuraminidase and human membrane sialidase ( hNeu3) genes. Lectin binding assay was used for estimation of a α (2,3)-sialylation level by fluorescent microscopy and FACS.   Results: We compared sialidases from bacteria, Influenza virus and human. Sialidases from Salmonella and Influenza A neuraminidase effectively cleaved α (2-3)-SA receptors. Viral neuraminidase demonstrated a higher activity. Sialidases from Actinomyces and hNeu3 did not show any activity against α (2-3) SA under physiological conditions. Conclusion: Our results demonstrated that sialidases with different specificity and activity can be selected as genes providing antiviral defence. Combining chosen sialidases with different activity together with tissue-specific promoters would provide an optimal level of desialylation. Tissue specific expression of the sialidases could protect domestic birds from infection.

Funder

Russian Science Foundation

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3