Development of a magneto-optical Kerr microscope using a 3D printer

Author:

Uebo Koki,Shiokawa Yuto,Takahashi Ryunosuke,Nakata Suguru,Wadati HirokiORCID

Abstract

Background Magneto-optical Kerr effect (MOKE) microscopes are powerful experimental tools to observe magnetic domains in magnetic materials. These devices are, however, typically large, unportable, and expensive (∼ several million yen), and therefore prevent many researchers in the field of materials science from easy access to study real-space images of magnetic domains. Methods To overcome these issues, we utilized data from “The OpenFlexure Project” developed by the University of Bath and the University of Cambridge. The purpose of this project is to make high-precision mechanical positioning of the studied sample available to anyone with a 3D printer, especially for use in microscopes. We built a low-cost and portable MOKE microscope device with a 3D printer. We redesigned the 3D modeling data of an ordinary optical microscope provided by The OpenFlexure project and incorporated additional elements, such as optical polarizers and an electromagnetic coil into the primarily designed microscope that did not originally have these elements. Results We successfully observed magnetic domains and their real-space motions induced by magnetic fields using the palm-sized low-cost MOKE microscope, which costs approximately 30,000 yen in raw materials to construct. Conclusions Our methodology to assemble a low-cost MOKE microscope will enable researchers working in the field of materials science to observe magnetic domains more easily without commercial equipment.

Funder

Japan Society for the Promotion of Science

The Japan Science Society

MEXT Q-LEAP

Asahi Glass Foundation

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3