Abstract
A substantial portion of molecules in an organism are involved in regulation of a wide spectrum of biological processes. Several models have been presented for various forms of biological regulation, including gene expression regulation and physiological regulation; however, a generic model is missing. Recently a new unifying theory in biology, poikilosis, was presented. Poikilosis indicates that all systems display intrinsic heterogeneity, which is a normal state. The concept of poikilosis allowed development of a model for biological regulation applicable to all types of regulated systems. The perturbation-lagom-TATAR countermeasures-regulator (PLTR) model combines the effects of perturbation and lagom (allowed and sufficient extent of heterogeneity) in a system with tolerance, avoidance, repair, attenuation and resistance (TARAR) countermeasures, and possible regulators. There are three modes of regulation, two of which are lagom-related. In the first scenario, lagom is maintained, both intrinsic (passive) and active TARAR countermeasures can be involved. In the second mode, there is a shift from one lagom to another. In the third mode, reguland regulation, the regulated entity is the target of a regulatory shift, which is often irreversible or requires action of another regulator to return to original state. After the shift, the system enters to lagom maintenance mode, but at new lagom extent. The model is described and elaborated with examples and applications, including medicine and systems biology. Consequences of non-lagom extent of heterogeneity are introduced, along with a novel idea for therapy by reconstituting biological processes to lagom extent, even when the primary effect cannot be treated.
Subject
General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献