Mango quality prediction based on near-infrared spectroscopy using multi-predictor local polynomial regression modeling

Author:

Ulya Millatul,Chamidah NurORCID,Saifudin Toha

Abstract

Background: pH and total soluble solids (TSS) are important quality parameters of mangoes; they represent the acidity and sweetness of the fruit, respectively. This study predicts the pH and TSS of intact mangoes based on near-infrared (NIR) spectroscopy using multi-predictor local polynomial regression (MLPR) modeling. Herein, the prediction performance of kernel partial least square regression (KPLSR), support vector machine regression (SVMR), and MLPR is compared. Methods: For this purpose, 186 intact mango samples at three different maturity stages are used. Prediction models are built using MLPR, KPLSR, and SVMR based on untreated and treated spectra. The best regression model for predicting pH is MLPR based on Gaussian filter smoothing spectra. Moreover, the TSS value is more accurately predicted using MLPR based on Savitzky–Golay smoothing. Results: The findings reveal that MLPR is highly accurate in estimating the pH and TSS of mangoes, with mean absolute percentage error (MAPE) values less than 10 %. In addition, the MLPR model has the best predictive performance with the lowest Mean Squared error (MSE) and root mean squared error (RMSE) values and the highest R2 value. Conclusions: The use of NIR spectroscopy in combination with multi-predictor local polynomial regression could provide a quick and non-destructive technique for predicting mango quality. Thus, the results of this study help support sustainable production as a sustainable development goal.

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference44 articles.

1. Tasliah Varietas Unggul Mangga Gadung 21: Daging Buah Tebal, Berserat Rendah, Rasa Manis.;Karsinah;Iptek Hortik.,2017

2. Postharvest Biology and Technology of Temperate Fruits.;S Mir,2018

3. Towards Fruit Maturity Estimation Using NIR Spectroscopy.;A Sohaib;Infrared Phys. Technol.,2020

4. Using Visible and near Infrared Diffuse Transmittance Technique to Predict Soluble Solids Content of Watermelon in an On-Line Detection System.;D Jie;Postharvest Biol. Technol.,2014

5. Prediction of Chemical Contents in ‘Gedong Gincu’ Mango Using near Infrared Spectroscopy.;H Sari;J. Agritech.,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3