Growth kinetics of multiple Acinetobacter baumannii resistotype after meropenem-based antibiotic combination exposure

Author:

Rivani Erizka,Endraswari Pepy Dwi,Widodo Agung Dwi Wahyu

Abstract

Background: Carbapenems are the treatment of choice for multidrug-resistant (MDR) and extensively drug-resistant (XDR) Acinetobacter baumannii infections, but the emergence of carbapenem-resistant A. baumannii (CRAB) has rendered it ineffective in the vast majority of cases. Combination therapy has grown in popularity over the last decade; this study aims to analyze A.baumannii growth kinetics after exposure to meropenem and ampicillin-sulbactam compared with meropenem and amikacin antibiotic combinations in clinically relevant concentrations.  Methods: This experimental laboratory study was conducted on the A. baumannii ATCC 19606 isolate and three clinical isolates that were intermediate or resistant to tested antibiotics. Meropenem and ampicillin-sulbactam, as well as meropenem and amikacin, were tested at four different concentrations against isolates. Turbidity measurements were taken at predetermined time points of 0, 1, 2, 4, 6, 8, and 24 hours following exposure; bacterial concentration was enumerated using the agar plate method, with the results plotted in a time-kill curve.   Results: A bactericidal effect was achieved in isolates that were intermediate to ampicillin-sulbactam and resistant to meropenem after the administration of meropenem and ampicillin-sulbactam combination with a concentration of 4 µg/ml and 16/8 µg/ml, respectively. The combination of meropenem and ampicillin-sulbactam demonstrated bacteriostatic activity against isolates that were resistant to both antibiotics. Isolates treated with resistant antibiotics showed an increased growth rate compared to the growth control.  Conclusion: The combination of meropenem and ampicillin-sulbactam could be a promising combination therapy in treating CRAB infections. The mechanism and degree of antibiotic resistance in the isolates affect the efficacy of antibiotic combinations; further research is needed to corroborate the findings of this study.

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3