Progress and challenges in the computational prediction of gene function using networks

Author:

Pavlidis Paul,Gillis Jesse

Abstract

In this opinion piece, we attempt to unify recent arguments we have made that serious confounds affect the use of network data to predict and characterize gene function. The development of computational approaches to determine gene function is a major strand of computational genomics research. However, progress beyond using BLAST to transfer annotations has been surprisingly slow. We have previously argued that a large part of the reported success in using "guilt by association" in network data is due to the tendency of methods to simply assign new functions to already well-annotated genes. While such predictions will tend to be correct, they are generic; it is true, but not very helpful, that a gene with many functions is more likely to have any function. We have also presented evidence that much of the remaining performance in cross-validation cannot be usefully generalized to new predictions, making progressive improvement in analysis difficult to engineer. Here we summarize our findings about how these problems will affect network analysis, discuss some ongoing responses within the field to these issues, and consolidate some recommendations and speculation, which we hope will modestly increase the reliability and specificity of gene function prediction.

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3