Abstract
Background Globally, scientists now have the ability to generate a vast amount of high throughput biomedical data that carry critical information for important clinical and public health applications. This data revolution in biology is now creating a plethora of new single-cell datasets. Concurrently, there have been significant methodological advances in single-cell research. Integrating these two resources, creating tailor-made, efficient, and purpose-specific data analysis approaches can assist in accelerating scientific discovery. Methods We developed a series of living workshops for building data stories, using Single-cell data integrative analysis (scdney). scdney is a wrapper package with a collection of single-cell analysis R packages incorporating data integration, cell type annotation, higher order testing and more. Results Here, we illustrate two specific workshops. The first workshop examines how to characterise the identity and/or state of cells and the relationship between them, known as phenotyping. The second workshop focuses on extracting higher-order features from cells to predict disease progression. Conclusions Through these workshops, we not only showcase current solutions, but also highlight critical thinking points. In particular, we highlight the Thinking Process Template that provides a structured framework for the decision-making process behind such single-cell analyses. Furthermore, our workshop will incorporate dynamic contributions from the community in a collaborative learning approach, thus the term ‘living’.
Funder
A National Health and Medical Research Council (NHMRC) Investigator Grant
Australian Research Council Discovery Early Career Researcher Awards
the AIR@innoHK programme of the Innovation and Technology Commission of Hong Kong
Research Training Program Tuition Fee Offset and Stipend Scholarship
University of Sydney Postgraduate Award Stipend Scholarship
Subject
General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine