Interactions of CAF1-NOT complex components from Trypanosoma brucei

Author:

Chakraborty Chaitali,Fadda Abeer,Erben Esteban,Lueong Smiths,Hoheisel Jörg,Mugo Elisha,Clayton ChristineORCID

Abstract

The CAF1-NOT complex of Trypanosoma brucei, like that of other eukaryotes, contains several NOT proteins (NOT1, NOT3, NOT3/5, NOT10, and NOT11), NOT9/CAF40, and the CAF1 deadenylase, which targets 3' poly(A) tails. Again like other eukaryotes, deadenylation is the first step in the degradation of most trypanosome mRNAs. In animal cells, destruction of unstable mRNAs is accelerated by proteins that bind the RNA in a sequence-specific fashion, and also recruit the CAF1-NOT complex. However, this has not yet been demonstrated for T. brucei. To find interaction partners for the trypanosome NOT complex, we did a genome-wide yeast two-hybrid screen, using a random shotgun protein fragment library, with the subunits CAF40, NOT2, NOT10 and NOT11 as baits. To assess interaction specificity, we compared the results with those from other trypanosome proteins, including the cyclin-F-box protein CFB1. The yeast 2-hybrid screen yielded four putatively interacting proteins for NOT2, eleven for NOT11, but only one for NOT9/CAF40. Both CFB1 and NOT10 had over a hundred potential interactions, indicating a lack of specificity. Nevertheless, a detected interaction between NOT10 and NOT11 is likely to be genuine. We also identified proteins that co-purify with affinity tagged NOT9/CAF40 by mass spectrometry. The co-purifying proteins did not include the 2-hybrid partner, but the results confirmed NOT9/CAF40 association with the CAF1-NOT complex, and suggested interactions with expression-repressing RNA-binding proteins (ZC3H8, ZC3H30, and ZC3H46) and the deadenylase PARN3.

Funder

Deutsche Forschungsgemeinschaft

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3