Automated segmentation of endometriosis using transfer learning technique

Author:

Visalaxi S.ORCID,Sudalaimuthu T.

Abstract

Background: This paper focuses on segmenting the exact location of endometriosis using the state-of-art technique known as U-Net. Endometriosis is a progressive disorder that has a significant impact on women. The lesion-like appearance that grows inside the uterus and sheds for every periodical cycle is known as endometriosis. If the lesion exists and is transferred to other locations in the women’s reproductive system, it may lead to a serious problem. Besides radiologists deep learning techniques exist for recognizing the presence and aggravation of endometriosis. Methods: The proposed method known as structural similarity analysis of endometriosis (SSAE) identifies the similarity between pathologically identified and annotated images obtained from standardized dataset known as GLENDA v1.5 by implementing two systematic approaches. The first approach is based on semantic segmentation and the second approach uses statistical analysis. Semantic segmentation is a cutting-edge technology for identifying exact locations by performing pixel-level classification. In semantic segmentation, U-Net is a transfer-learning architecture that works effectively for biomedical image classification. The SSAE implements the U-Net architecture for segmenting endometriosis based on the region of occurrence. The second approach proves the similarity between pathologically identified images and the corresponding annotated images using a statistical evaluation. Statistical analysis was performed using calculation of both the mean and standard deviation of all four regions by implementing systematic sampling procedure. Results: The SSAE obtains the intersection over union value of 0.72 and the F1 score of 0.74 for the trained dataset. The means of both the laparoscopic and annotated images for all regions were similar. Consequently, the SSAE facilitated the presence of abnormalities in a specific region. Conclusions: The proposed SSAE approach identifies the affected region using U-Net architecture and systematic sampling procedure.

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3