Abstract
Background: A growing population of cells accumulates mutations. A single mutation early in the growth process carries forward to all descendant cells, causing the final population to have a lot of mutant cells. When the first mutation happens later in growth, the final population typically has fewer mutants. The number of mutant cells in the final population follows the Luria-Delbrück distribution. The mathematical form of the distribution is known only from its probability generating function. For larger populations of cells, one typically uses computer simulations to estimate the distribution. Methods: This article searches for a simple approximation of the Luria-Delbrück distribution, with an explicit mathematical form that can be used easily in calculations. Results: The Fréchet distribution provides a good approximation for the Luria-Delbrück distribution for neutral mutations, which do not cause a growth rate change relative to the original cells. Conclusions: The Fréchet distribution apparently provides a good match through its description of extreme value problems for multiplicative processes such as exponential growth.
Funder
U.S. Department of Defense
National Science Foundation
Donald Bren Foundation
Subject
General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献