Successful CRISPR/Cas9 mediated homologous recombination in a chicken cell line

Author:

Antonova EkaterinaORCID,Glazova Olga,Gaponova Anna,Eremyan AykazORCID,Zvereva Svetlana,Grebenkina Natalya,Volkova Natalya,Volchkov Pavel

Abstract

Background: CRISPR/Cas9 system is becoming the dominant genome editing tool in a variety of organisms. CRISPR/Cas9 mediated knock out has been demonstrated both in chicken cell lines and in chicken germ cells that served to generate genetically modified birds. However, there is limited data about CRISPR/Cas9 dependent homology directed repair (HDR) for avian, even in cell culture. Few attempts have been made with integrations in safe harbor loci of chicken genome that induces constitutive expression of the inserted gene. Gene expression under an endogenous promoter would be more valuable than under a constitutive exogenous promoter, as it allows the gene expression to be tissue-specific. Methods: Three gRNAs were chosen to target chicken 3’-untranslated region of GAPDH gene. Cas9-mediated activity in the targeted locus for the gRNAs in DF-1 cells was estimated by T7E1 assay. To edit the locus, the HDR cassette was added along with CRISPR/Cas9. The inserted sequence contained eGFP in frame with a GAPDH coding sequence via P2A and Neomycin resistance gene (neoR) under cytomegalovirus promoter. Correct integration of the cassette was confirmed with fluorescent microscopy, PCR analysis and sequencing. Enrichment of modified cells was done by G418 selection. Efficiency of integration was assessed with fluorescence activated cell sorting (FACS). Results: We have established a CRISPR/Cas9 system to target an endogenous locus and precisely insert a gene under endogenous control. In our system, we used positive and negative selection to enrich modified cells and remove cells with undesirable insertions. The efficiency of CRISPR/Cas9-mediated HDR was increased up to 90% via G418 enrichment. We have successfully inserted eGFP under control of the chicken GAPDH promoter. Conclusions: The approach can be used further to insert genes of interest under control of tissue-specific promoters in primordial germ cells in order to produce genetically modified birds with useful for biotechnological purposes features.

Funder

Russian Science Foundation

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3