Effect of non-contact induction heating on HA coatings and bone cement, an ex vivo study

Author:

Kamphof RobertORCID,Cama Dr. Giuseppe,Mesman-Vergeer Jeroen,G.H.H. Nelissen Dr. Rob,G.C.W. Pijls Dr. BartORCID

Abstract

Background Prosthetic joint infection is a serious complication that can arise after total joint replacement surgery. When bacteria colonise an orthopaedic implant, they form biofilms that protect them from their environment, making them difficult to remove. Treatment is further complicated by a global rise of antimicrobial resistance. These protective mechanisms make treatment of prosthetic joint infection increasingly complex. Non-contact induction heating is an upcoming technology that uses heat to eradicate bacteria that are present on the surface of metallic implants. This study aims to provide insight into the feasibility of using non-contact induction heating on metallic implants that are in direct contact with other biomaterials, such as coatings composed of hydroxyapatite and bone cement composed of poly (methyl methacrylate) (PMMA). Methods Characterisation of hydroxyapatite coatings and adhesion strength tests were conducted according to standards set by the International Organisation for Standardisation (ISO 13779-2). The fixation strength of acrylic bone cement was tested according to an adapted method from ISO. Results It was found that non-contact induction heating did not significantly affect the adhesion strength of hydroxyapatite coatings (p=0.697). In contrast to hydroxyapatite coatings, acrylic bone cement softened temporarily as the temperature exceeded the glass transition temperature (83.38 ± 10.88°C). However, the induction heating temperature had no significant effect on the fixation strength after the cement was allowed to cool down (p=0.535). Conclusion This study shows the feasibility of using non-contact induction heating up to 80°C when bone cement or ceramic coatings are present in contact with infected metallic implants.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

F1000 Research Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3