Visualization of drug target interactions in the contexts of pathways and networks with ReactomeFIViz

Author:

Blucher Aurora S.,McWeeney Shannon K.,Stein Lincoln,Wu GuanmingORCID

Abstract

The precision medicine paradigm is centered on therapies targeted to particular molecular entities that will elicit an anticipated and controlled therapeutic response. However, genetic alterations in the drug targets themselves or in genes whose products interact with the targets can affect how well a drug actually works for an individual patient. To better understand the effects of targeted therapies in patients, we need software tools capable of simultaneously visualizing patient-specific variations and drug targets in their biological context. This context can be provided using pathways, which are process-oriented representations of biological reactions, or biological networks, which represent pathway-spanning interactions among genes, proteins, and other biological entities. To address this need, we have recently enhanced the Reactome Cytoscape app, ReactomeFIViz, to assist researchers in visualizing and modeling drug and target interactions. ReactomeFIViz integrates drug-target interaction information with high quality manually curated pathways and a genome-wide human functional interaction network. Both the pathways and the functional interaction network are provided by Reactome, the most comprehensive open source biological pathway knowledgebase. We describe several examples demonstrating the application of these new features to the visualization of drugs in the contexts of pathways and networks. Complementing previous features in ReactomeFIViz, these new features enable researchers to ask focused questions about targeted therapies, such as drug sensitivity for patients with different mutation profiles, using a pathway or network perspective.

Funder

National Institutes of Health

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3