Author:
Alexander Jessy,Jacob Alexander,Quigg Richard J.
Abstract
Neurological involvement is one of the most devastating complications of the disease, systemic lupus erythematosus (SLE). To understand the effect of the drugs, cyclophosphamide (CY) and prednisolone (PD) on CNS manifestations, the New Zealand Black/White (NZB/W) lupus mice, were given a cocktail of both drugs by intraperitoneal injections daily from 22 to 44 weeks of age. The treatment prolonged survival (10% of the treated 20 NZB/W mice died compared to 50% of the 30 NZB/W mice, with no mortality in the control NZW mice). Real-time PCR analysis showed a three- to fifteen-fold increase in the expression of GFAP, vimentin and syndecan4 in the cerebral cortex of 44 week NZB/W mice. These alterations were prevented by CY and PD treatment. Immunostaining revealed increased GFAP expression in NZB/W mice compared to congenic, nondiseased NZW mice, which was prevented by treatment. In addition, concomitant changes were observed in the expression of extracellular matrix proteins, collagen IV and fibronectin. To determine the impact of these alterations on the neurological manifestations of SLE, behavior was studied in these mice. The NZB/W mice were spontaneously less active in the open field and exhibited a decrease in distance traveled (58% of control, p<0.01) and ambulatory measurements (52% of control, p<0.01). They took more time (8.8+1.2min) to escape from the maze compared to the control NZW mice (2.6+0.8min). Even more striking was that the behavioral deficits were alleviated in these mice by CY and PD treatment. These results support the hypothesis that increased astrogliosis and altered extracellular matrix proteins may be two of the critical factors that mediate lupus brain disease.
Funder
National Institutes of Health
Subject
General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine