Hippocampal development and the dissociation of cognitive-spatial mapping from motor performance

Author:

Devan Bryan D.,Magalis Christopher,McDonald Robert J.ORCID

Abstract

The publication of a recent article in F1000Research has led to discussion of, and correspondence on a broader issue that has a long history in the fields of neuroscience and psychology.  Namely, is it possible to separate the cognitive components of performance, in this case spatial behavior, from the motoric demands of a task?  Early psychological experiments attempted such a dissociation by studying a form of spatial maze learning where initially rats were allowed to explore a complex maze, termed “latent learning,” before reinforcement was introduced.  Those rats afforded the latent learning experience solved the task faster than those that were not, implying that cognitive map learning during exploration aided in the performance of the task once a motivational component was introduced.  This form of latent learning was interpreted as successfully demonstrating that an exploratory cognitive map component was acquired irrespective of performing a learned spatial response under deprivation/motivational conditions.  The neural substrate for cognitive learning was hypothesized to depend on place cells within the hippocampus.  Subsequent behavioral studies attempted to directly eliminate the motor component of spatial learning by allowing rats to passively view the distal environment before performing any motor response using a task that is widely considered to be hippocampal-dependent.  Latent learning in the water maze, using a passive placement procedure has met with mixed results.  One constraint on viewing cues before performing a learned swimming response to a hidden goal has been the act of dynamically viewing distal cues while moving through a part of the environment where an optimal learned spatial escape response would be observed.  We briefly review these past findings obtained with adult animals to the recent efforts of establishing a “behavioral topology” separating cognitive-spatial learning from tasks differing in motoric demands in an attempt to define when cognitive-spatial behavior emerges during development.

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference39 articles.

1. Emergence of spatial behavioral function and associated mossy fiber connectivity and c-Fos labeling patterns in the hippocampus of rats [v1; ref status: indexed, http://f1000r.es/5nr].;R Comba;F1000Res.,2015

2. Latent place learning in a novel environment and the influences of prior training in rats.;J Keith;Psychobiology.,1988

3. Being there: a novel demonstration of latent spatial learning in the rat.;R Sutherland;Behav Neural Biol.,1982

4. A room with a view and a polarizing cue: individual differences in the stimulus control of place navigation and passive latent learning in the water maze.;B Devan;Neurobiol Learn Mem.,2002

5. Latent learning does not produce instantaneous transfer of place navigation: A rejoinder to Keith and McVety.;G Chew;Psychobiology.,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3