Integrative concept of homeostasis: translating physiology into medicine

Author:

Spasojević Ivan

Abstract

To truly understand living systems they must be viewed as a whole. In order to achieve this and to come to some law that living systems comply with, the reductionist approach, which has delivered a tremendous amount of data so far, should be complemented with integrative concepts. The current paper represents my humble attempt towards an integrative concept of homeostasis that would describe the (patho)physiological setup of adult human/mammal system, and that might be applicable in medicine. Homeostasis can be defined as time- and initial-condition-independent globally stabile state of non-equilibrium of a living system in which the interactions of system with the surroundings and internal processes are overall in balance or very near it. The presence of homeostasis or the shift from homeostasis of an adult human/mammal system can be described by equation that takes into account energy and informational input and output, catabolism and anabolism, oxidation and reduction, and entropy, where changes in the input should equal changes in the output within a specific period of time. Catabolism and oxidation are presented on the input side since the drive of the surroundings is to decompose and oxidize living systems, i.e. systems are under constant 'catabolic and oxidative pressure'. According to the equation, homeostasis might be regained by changing any of the input or output components in a proper manner (and within certain limits), not only the one(s) that has/have been changed in the first place resulting in the deviation from homeostasis.

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference46 articles.

1. Claude Bernard, the first systems biologist, and the future of physiology.;D Noble;Exp Physiol.,2008

2. Introduction a l’etude de la médicine expérimentale;C Bernard,1865

3. Lècons sur les phénomènes de la vie communs aux animaux et aux vegetaux;C Bernard,1878

4. What is life?;E Schrödinger,1944

5. Body size and metabolism.;M Kleiber;Hilgardia.,1932

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3