Elucidating genomic gaps using phenotypic profiles

Author:

Cuevas Daniel A.,Garza Daniel,Sanchez Savannah E.,Rostron Jason,Henry Chris S.,Vonstein Veronika,Overbeek Ross A.,Segall Anca,Rohwer Forest,Dinsdale Elizabeth A.,Edwards Robert A.

Abstract

Advances in genomic sequencing provide the ability to model the metabolism of organisms from their genome annotation. The bioinformatics tools developed to deduce gene function through homology-based methods are dependent on public databases; thus, novel discoveries are not readily extrapolated from current analysis tools with a homology dependence. Multi-phenotype Assay Plates (MAPs) provide a high-throughput method to profile bacterial phenotypes by growing bacteria in various growth conditions, simultaneously. More robust and accurate computational models can be constructed by coupling MAPs with current genomic annotation methods.PMAnalyzeris an online tool that analyzes bacterial growth curves from the MAP system which are then used to optimize metabolic models duringin silicogrowth simulations. UsingCitrobacter sedlakiias a prototype, the Rapid Annotation using Subsystem Technology (RAST) tool produced a model consisting of 1,367 enzymatic reactions. After the optimization, 44 reactions were added to, or modified within, the model. The model correctly predicted the outcome on 93% of growth experiments.

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3