Antibiotic Drug screening and Image Characterization Toolbox (A.D.I.C.T.): a robust imaging workflow to monitor antibiotic stress response in bacterial cells in vivo

Author:

Mayer BenjaminORCID,Schwan MeikeORCID,Thormann Kai M.,Graumann Peter L.ORCID

Abstract

The search for novel drugs that efficiently eliminate prokaryotic pathogens is one of the most urgent health topics of our time. Robust evaluation methods for monitoring the antibiotic stress response in prokaryotes are therefore necessary for developing respective screening strategies. Besides advantages of common in vitro techniques, there is a growing demand for in vivo information based on imaging techniques that allow to screen antibiotic candidates in a dynamic manner. Gathering information from imaging data in a reproducible manner, robust data processing and analysis workflows demand advanced (semi-)automation and data management to increase reproducibility. Here we demonstrate a versatile and robust semi-automated image acquisition, processing and analysis workflow to investigate bacterial cell morphology in a quantitative manner. The presented workflow, A.D.I.C.T, covers aspects of experimental setup deployment, data acquisition and handling, image processing (e.g. ROI management, data transformation into binary images, background subtraction, filtering, projections) as well as statistical evaluation of the cellular stress response (e.g. shape measurement distributions, cell shape modeling, probability density evaluation of fluorescence imaging micrographs) towards antibiotic-induced stress, obtained from time-course experiments. The imaging workflow is based on regular brightfield images combined with live-cell imaging data gathered from bacteria, in our case from recombinant Shewanella cells, which are processed as binary images. The model organism expresses target proteins relevant for membrane-biogenesis that are functionally fused to respective fluorescent proteins. Data processing and analysis are based on customized scripts using ImageJ2/FIJI, Celltool and R packages that can be easily reproduced and adapted by users. Summing up, our approach aims at supporting life-scientists to establish their own imaging-pipeline in order to exploit their data as versatile as possible and in a reproducible manner.

Funder

Deutsche Forschungsgemeinschaft

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3