Abstract
Stimulated Brillouin scattering (SBS) is useful, among others for generating slow light, sensing and amplification. SBS was previously viewed as a poor method due to the limitation on optical power in high-powered photonic applications. However, considering the many possible applications using SBS, it is now of interest to enhance SBS in areas of Brillouin frequency shift together with Brillouin Gain. A numerical model, using a fully vectorial approach, by employing the finite element method, was developed to investigate methods for enhancing SBS in optical fiber. This paper describes the method related to the numerical model and discusses the analysis between the interactions of horizontal, shear and hybrid acoustic modes; and optical modes in optical fiber. Two case studies were used to demonstrate this. Based on this numerical model, we report the influence of core radius, clad radius and effective refractive index on the Brillouin frequency shift and gain. We observe the difference of Brillouin shift frequency between a normal silica optical fiber and that of a tapered fiber where nonlinearities are higher. Also observed, the different core radii used and their respective Brillouin shift. For future work, the COMSOL model can also be used for the following areas of research, including simulating “surface Brillouin shift” and also to provide in-sights to the Brillouin shift frequency vB of various structures of waveguides, e.g circular, and triangular, and also to examine specialty fibers, e.g. Thulium and Chalcogenide doped fibers, and their effects on Brillouin shift frequency.
Subject
General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Multi-parameter Sensing Based on the Stimulated Brillouin Scattering in Ring Core Fibers;2023 20th International Multi-Conference on Systems, Signals & Devices (SSD);2023-02-20