The enigma of DNA methylation in the mammalian oocyte

Author:

Demond Hannah,Kelsey GavinORCID

Abstract

The mammalian genome experiences profound setting and resetting of epigenetic patterns during the life-course. This is understood best for DNA methylation: the specification of germ cells, gametogenesis, and early embryo development are characterised by phases of widespread erasure and rewriting of methylation. While mitigating against intergenerational transmission of epigenetic information, these processes must also ensure correct genomic imprinting that depends on faithful and long-term memory of gamete-derived methylation states in the next generation. This underscores the importance of understanding the mechanisms of methylation programming in the germline. De novo methylation in the oocyte is of particular interest because of its intimate association with transcription, which results in a bimodal methylome unique amongst mammalian cells. Moreover, this methylation landscape is entirely set up in a non-dividing cell, making the oocyte a fascinating model system in which to explore mechanistic determinants of methylation. Here, we summarise current knowledge on the oocyte DNA methylome and how it is established, focussing on recent insights from knockout models in the mouse that explore the interplay between methylation and chromatin states. We also highlight some remaining paradoxes and enigmas, in particular the involvement of non-nuclear factors for correct de novo methylation.

Funder

Medical Research Council

Biotechnology and Biological Sciences Research Council

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3