High-throughput multiplexed tandem repeat genotyping using targeted long-read sequencing

Author:

Ganesamoorthy DevikaORCID,Yan Mengjia,Murigneux ValentineORCID,Zhou ChenxiORCID,Cao Minh Duc,Duarte Tania P. S.ORCID,Coin Lachlan J. M.

Abstract

Background: Tandem repeats (TRs) are highly prone to variation in copy numbers due to their repetitive and unstable nature, which makes them a major source of genomic variation between individuals. However, population variation of TRs has not been widely explored due to the limitations of existing approaches, which are either low-throughput or restricted to a small subset of TRs. Here, we demonstrate a targeted sequencing approach combined with Nanopore sequencing to overcome these limitations. Methods: We selected 142 TR targets and enriched these regions using Agilent SureSelect target enrichment approach with only 200 ng of input DNA. We barcoded the enriched products and sequenced on Oxford Nanopore MinION sequencer. We used VNTRTyper and Tandem-genotypes to genotype TRs from long-read sequencing data. Gold standard PCR sizing analysis was used to validate genotyping results from targeted sequencing data.  Results: We achieved an average of 3062-fold target enrichment on a panel of 142 TR loci, generating an average of 97X coverage per sample with 200 ng of input DNA per sample. We successfully genotyped an average of 75% targets and genotyping rate increased to 91% for the highest-coverage sample for targets with length less than 2 kb, and GC content greater than 25%. Alleles estimated from targeted long-read sequencing were concordant with gold standard PCR sizing analysis and highly correlated with alleles estimated from whole genome long-read sequencing. Conclusions: We demonstrate a targeted long-read sequencing approach that enables simultaneous analysis of hundreds of TRs and accuracy is comparable to PCR sizing analysis. Our approach is feasible to scale for more targets and more samples facilitating large-scale analysis of TRs.

Funder

National Health and Medical Research Council

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3