Detection of antifungal drug-resistant and ERG11 gene mutations among clinical isolates of Candida species isolated from Khartoum, Sudan.

Author:

Osman Mohamed AhmedORCID,Suliman Mohamed MalikORCID,Abdelrahman Hussain MohamedORCID,Fatahalrahman Ahmed Ibrahim

Abstract

Background: Candida species are one of the most important opportunistic fungal pathogens that cause both superficial and systemic infections, especially in immunocompromised individuals. Considering the sharp increase in the rate of Candida infections, and resistance to commonly used antifungal agents in the last decades; this study was conducted to determine the rate of resistance among clinical isolates of Candida species, and to characterize some of the resistant genes among resistant isolates collected in Khartoum.  Methods: This is a cross-sectional laboratory-based study included 100 pre-screened Candida species isolates from Khartoum state hospitals. Chromogenic media was used for Candida isolation and/or identification. The standard disc diffusion method was performed to investigate the susceptibility to fluconazole, itraconazole, and amphotericin. Following genomic DNA extraction, the entire ERG11 gene was amplified from some C. albicans resistant isolates, sequenced, and further analyzed. Results: Out of 100 clinical isolates collected, 51% were C. albicans, followed by C. glabrata (31%), C. krusie (8%), C. tropicals (5%), and C. dupliniens (5%). Resistance rate was 23% for fluconazole, 4% for itraconazole, while there were no amphotericin resistant isolates detected. C. albicans ERG11 gene sequence reveals 15 different mutations. Among these, three (D116E, E266D, and V488I) were missense mutations; however, these substitutions do not contribute to fluconazole resistance. Conclusion: C. albicans was found to be the most common species. Resistance against fluconazole was observed most frequently; however, mutations in ERG11 are unlikely to be the reason behind fluconazole resistance among these isolates.

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3