Data extraction methods for systematic review (semi)automation: A living review protocol

Author:

Schmidt LenaORCID,Olorisade Babatunde K.ORCID,McGuinness Luke A.ORCID,Higgins Julian P. T.

Abstract

Background: Researchers in evidence-based medicine cannot keep up with the amounts of both old and newly published primary research articles. Conducting and updating of systematic reviews is time-consuming. In practice, data extraction is one of the most complex tasks in this process. Exponential improvements in computational processing speed and data storage are fostering the development of data extraction models and algorithms. This, in combination with quicker pathways to publication, led to a large landscape of tools and methods for data extraction tasks. Objective: To review published methods and tools for data extraction to (semi)automate the systematic reviewing process. Methods: We propose to conduct a living review. With this methodology we aim to do monthly search updates, as well as bi-annual review updates if new evidence permits it. In a cross-sectional analysis we will extract methodological characteristics and assess the quality of reporting in our included papers. Conclusions: We aim to increase transparency in the reporting and assessment of machine learning technologies to the benefit of data scientists, systematic reviewers and funders of health research. This living review will help to reduce duplicate efforts by data scientists who develop data extraction methods. It will also serve to inform systematic reviewers about possibilities to support their data extraction.

Funder

National Institute for Health Research

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3