Tissue-specific regulation of the Na, K-ATPase by the cytosolic NaAF: some thoughts on brain function

Author:

Ray Tushar

Abstract

The dual topology P-2 ATPase, which consists of a α²β² tetramer, explains numerous functions of the cation transporting ATPase system. The ubiquitous cytosolic protein regulator (NaAF) of 170 k Da mass regulates P-2 ATPase function in a low Ca (µM) neighborhood where Ca acts as the terminal regulator in the intracellular signaling cascade. The Na, K- ATPase also seems to function as an H, K-ATPase or a Ca-ATPase in altered states based on the local environment (low pH or high Ca) in a tissue specific manner. These altered effects are analogous to that of the 80 k Da cytosolic HAF in regulating the gastric H, K-ATPase system of the parietal cells.  However there are some important differences. The HAF stimulates the Na, K-ATPase but the NaAF cannot stimulate H, K-ATPase. Also, HAF is as effective as NaAF in stimulating the kidney Na, K-ATPase but about 60% as effective in stimulating brain Na, K-ATPase. These observations reveal that the Na, K- ATPase systems from kidney and brain, consisting of different kinds of αβ–isoforms, interact differently with the HAF molecule; thus substantiating that P-2 ATPase system plays different roles in different tissues in response to an universal NaAF. Another rare feature of the HAF is that it has histone kinase activity, suggesting that the HAF and NaAF may be capable of sending a direct signal to the nucleus for gene expression.In this paper, the central role of the NaAF-regulated Na, K-ATPase system in the activity and function of brain tissue is discussed.  It is noted that the altered function of the nerve terminus located Na, K-ATPase system works as a Ca-pump (after depolarization) and as a Na-pump (in repolarization) in alternate sequence. The possible role of Ca-sensing receptor (CaR) in the voltage gated channeling of Ca has been raised and the possibility of a dual channel Na/H antiporter (NhaA) in pH homeostasis is discussed.

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Calcium Controls the P2-ATPase Mediated Homeostasis: Essential Role of NaAF;Regulation of Membrane Na+-K+ ATPase;2015-12-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3