Quality parameters for a multimodal EEG/EMG/kinematic brain-computer interface (BCI) aiming to suppress neurological tremor in upper limbs

Author:

Grimaldi Giuliana,Manto Mario,Jdaoudi Yassin

Abstract

Tremor is the most common movement disorder encountered during daily neurological practice. Tremor in the upper limbs causes functional disability and social inconvenience, impairing daily life activities. The response of tremor to pharmacotherapy is variable. Therefore, a combination of drugs is often required. Surgery is considered when the response to medications is not sufficient. However, about one third of patients are refractory to current treatments. New bioengineering therapies are emerging as possible alternatives. Our study was carried out in the framework of the European project “Tremor” (ICT-2007-224051). The main purpose of this challenging project was to develop and validate a new treatment for upper limb tremor based on the combination of functional electrical stimulation (FES; which has been shown to reduce upper limb tremor) with a brain-computer interface (BCI). A BCI-driven detection of voluntary movement is used to trigger FES in a closed-loop approach. Neurological tremor is detected using a matrix of EMG electrodes and inertial sensors embedded in a wearable textile. The identification of the intentionality of movement is a critical aspect to optimize this complex system. We propose a multimodal detection of the intentionality of movement by fusing signals from EEG, EMG and kinematic sensors (gyroscopes and accelerometry). Parameters of prediction of movement are extracted in order to provide global prediction plots and trigger FES properly. In particular, quality parameters (QPs) for the EEG signals, corticomuscular coherence and event-related desynchronization/synchronization (ERD/ERS) parameters are combined in an original algorithm which takes into account the refractoriness/responsiveness of tremor. A simulation study of the relationship between the threshold of ERD/ERS of artificial EEG traces and the QPs is also provided. Very interestingly, values of QPs were much greater than those obtained for the corticomuscular module alone.

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3