Benchmarking of long-read assemblers for prokaryote whole genome sequencing

Author:

Wick Ryan R.ORCID,Holt Kathryn E.

Abstract

Background: Data sets from long-read sequencing platforms (Oxford Nanopore Technologies and Pacific Biosciences) allow for most prokaryote genomes to be completely assembled – one contig per chromosome or plasmid. However, the high per-read error rate of long-read sequencing necessitates different approaches to assembly than those used for short-read sequencing. Multiple assembly tools (assemblers) exist, which use a variety of algorithms for long-read assembly. Methods: We used 500 simulated read sets and 120 real read sets to assess the performance of eight long-read assemblers (Canu, Flye, Miniasm/Minipolish, NECAT, NextDenovo/NextPolish, Raven, Redbean and Shasta) across a wide variety of genomes and read parameters. Assemblies were assessed on their structural accuracy/completeness, sequence identity, contig circularisation and computational resources used. Results: Canu v2.1 produced reliable assemblies and was good with plasmids, but it performed poorly with circularisation and had the longest runtimes of all assemblers tested. Flye v2.8 was also reliable and made the smallest sequence errors, though it used the most RAM. Miniasm/Minipolish v0.3/v0.1.3 was the most likely to produce clean contig circularisation. NECAT v20200803 was reliable and good at circularisation but tended to make larger sequence errors. NextDenovo/NextPolish v2.3.1/v1.3.1 was reliable with chromosome assembly but bad with plasmid assembly. Raven v1.3.0 was reliable for chromosome assembly, though it did not perform well on small plasmids and had circularisation issues. Redbean v2.5 and Shasta v0.7.0 were computationally efficient but more likely to produce incomplete assemblies. Conclusions: Of the assemblers tested, Flye, Miniasm/Minipolish, NextDenovo/NextPolish and Raven performed best overall. However, no single tool performed well on all metrics, highlighting the need for continued development on long-read assembly algorithms.

Funder

Sylvia and Charles Viertel Charitable Foundation

Bill and Melinda Gates Foundation

Department of Education, Employment and Workplace Relations, Australian Government

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference39 articles.

1. A history of DNA sequence assembly.;E Myers;IT - Information Technology.,2016

2. QUAST: quality assessment tool for genome assemblies.;A Gurevich;Bioinformatics.,2013

3. Coming of age: ten years of next-generation sequencing technologies.;S Goodwin;Nat Rev Genet.,2016

4. Insights from 20 years of bacterial genome sequencing.;M Land;Funct Integr Genomics.,2015

5. How repetitive are genomes?;B Haubold;BMC Bioinformatics.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3