Abstract
Background: Over 60% of the United States population is infected with herpes simplex virus 1 (HSV-1). Current HSV-1 treatment regimens exert their antiviral effects through a common mechanism of action and suffer from high dosing frequencies, which may contribute to patient noncompliance and the subsequent development of antiviral resistance. Although primarily known for their functions in maintaining homeostatic control of arterial blood and osmotic pressures, components of the Renin-Angiotensin Aldosterone System (RAAS) have been implicated in viral replication and some components demonstrated antiviral properties. However, the antiviral properties of RAAS components have not been well characterized in reference to HSV-1. Methods: To address this gap in knowledge, we evaluated the antiviral effects of captopril, an Angiotensin Converting Enzyme 1 (ACE-1) inhibitor, on HSV-1 infection in SH-SY5Y neuroblastoma cells. We demonstrated that captopril attenuates HSV-1-induced cytopathic effects (CPE) via cell-based and morphological assays. To investigate the potential mechanism, we conducted molecular modeling studies and identified the ability of captopril to interact with and bind HSV-1 glycoprotein D. To determine where in the virus life cycle captopril exerts its protective effects, we performed experiments observing the effect of captopril on both viral entry and replication utilizing a green fluorescent protein-tagged virus and subsequent quantitative Polymerase Chain Reaction. Results: Results suggest captopril protects cells from HSV-1-induced CPE through its effect on viral replication by increasing cell viability in infected cells and decreasing virus replication, which we propose is modulated through the decreased expression of ICP0. Conclusions: Collectively, the results presented here support further evaluation of captopril, and other RAAS components, as a basis for potential novel therapeutic interventions for the treatment of HSV-1, its associated pathologies, and potentially other virus infections.
Funder
Howard Hughes Medical Institute
National Science Foundation
Research Centers in Minority Institutions
Subject
General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献