Using machine learning techniques to develop risk prediction models to predict graft failure following kidney transplantation: protocol for a retrospective cohort study

Author:

Senanayake SameeraORCID,Barnett AdrianORCID,Graves NicholasORCID,Healy Helen,Baboolal Keshwar,Kularatna Sanjeewa

Abstract

Background: A mechanism to predict graft failure before the actual kidney transplantation occurs is crucial to clinical management of chronic kidney disease patients.  Several kidney graft outcome prediction models, developed using machine learning methods, are available in the literature.  However, most of those models used small datasets and none of the machine learning-based prediction models available in the medical literature modelled time-to-event (survival) information, but instead used the binary outcome of failure or not. The objective of this study is to develop two separate machine learning-based predictive models to predict graft failure following live and deceased donor kidney transplant, using time-to-event data in a large national dataset from Australia.   Methods: The dataset provided by the Australia and New Zealand Dialysis and Transplant Registry will be used for the analysis. This retrospective dataset contains the cohort of patients who underwent a kidney transplant in Australia from January 1st, 2007, to December 31st, 2017.  This included 3,758 live donor transplants and 7,365 deceased donor transplants.  Three machine learning methods (survival tree, random survival forest and survival support vector machine) and one traditional regression method, Cox proportional regression, will be used to develop the two predictive models.  The best predictive model will be selected based on the model’s performance. Discussion: This protocol describes the development of two separate machine learning-based predictive models to predict graft failure following live and deceased donor kidney transplant, using a large national dataset from Australia.   Furthermore, these two models will be the most comprehensive kidney graft failure predictive models that have used survival data to model using machine learning techniques.  Thus, these models are expected to provide valuable insight into the complex interactions between graft failure and donor and recipient characteristics.

Funder

Queensland University of Technology

Department of Education, Australian Governement

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3