Neuronal subset-specific Pten-deficient mice do not exhibit deficits in sensorimotor gating processes

Author:

Binder Matthew S.,Nolan Suzanne O.,Lugo Joaquin N.ORCID

Abstract

Background: Deficits in sensorimotor gating have been reported in individuals with autism spectrum disorder (ASD), as well as in ASD murine models. However, this behavior has not been examined in the neuronal subset-specific (NS)-Pten knockout (KO) model of ASD. NS-Pten KO mice exhibit hyperactivity of the PI3K/AKT/mTOR signaling pathway which is implicated in the onset of autistic deficits. This study investigates the potential relationship between PI3K/AKT/mTOR signaling and deficits in sensorimotor gating.    Methods: To assess sensorimotor gating in NS-Pten KO mice we utilized a three-day paradigm. On day 1 (habituation) the mice were administered 80 repetitions of a 120-dB startle stimulus. On day 2, prepulse inhibition was measured with 90 trials of the startle stimulus that was paired with a smaller (2, 7, or 12 dB) prepulse stimulus. Day 3 was assessed one week later, consisting of randomized startle trials and trials with no stimulus and was used to determine the startle response. Results: No significant difference between NS-Pten KO or wildtype (WT) mice was found for habituation (p > 0.05). No significant differences were found between groups when assessing the percentage of prepulse inhibition at 2, 7, and 12 dB (p > 0.05). There was also no difference in startle response between groups (p > 0.05). Conclusion: Our study found that the NS-Pten KO model does not display significant deficits in sensorimotor gating processes. The present findings help to elucidate the relationship between PI3K/AKT/mTOR hyperactivation and sensory reactivity.

Funder

National Institute of Neurological Disorders and Stroke

Baylor University

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3