Recursive Cluster Elimination based Rank Function (SVM-RCE-R) implemented in KNIME

Author:

Yousef MalikORCID,Bakir-Gungor Burcu,Jabeer Amhar,Goy Gokhan,Qureshi Rehman,C. Showe LouiseORCID

Abstract

In our earlier study, we proposed a novel feature selection approach, Recursive Cluster Elimination with Support Vector Machines (SVM-RCE) and implemented this approach in Matlab. Interest in this approach has grown over time and several researchers have incorporated SVM-RCE into their studies, resulting in a substantial number of scientific publications. This increased interest encouraged us to reconsider how feature selection, particularly in biological datasets, can benefit from considering the relationships of those genes in the selection process, this led to our development of SVM-RCE-R. The usefulness of SVM-RCE-R is further supported by development of maTE tool, which uses a similar approach to identify microRNA (miRNA) targets. We have now implemented the SVM-RCE-R algorithm in Knime in order to make it easier to apply and to make it more accessible to the biomedical community. The use of SVM-RCE-R in Knime is simple and intuitive, allowing researchers to immediately begin their data analysis without having to consult an information technology specialist. The input for the Knime tool is an EXCEL file (or text or CSV) with a simple structure and the output is also an EXCEL file. The Knime version also incorporates new features not available in the previous version. One of these features is a user-specific ranking function that enables the user to provide the weights of the accuracy, sensitivity, specificity, f-measure, area under curve and precision in the ranking function, allowing the user to select for greater sensitivity or greater specificity as needed. The results show that the ranking function has an impact on the performance of SVM-RCE-R. Some of the clusters that achieve high scores for a specified ranking can also have high scores in other metrics. This finding motivates future studies to suggest the optimal ranking function.

Funder

National Cancer Institute

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3