A hidden Markov model analysis of subject-specific seizure time-series data as a potential aid to clinical decision making

Author:

King Martin D.,Pujar Suresh,Scott Rod C.

Abstract

Background The seizure-count time series data acquired from three children with refractory epilepsy were used in a statistical modelling analysis designed to provide an explanation for the marked variation in seizure frequency that often occurs over time (over-dispersed Poisson behaviour). This was motivated by an expectation that a better understanding of the spontaneous shifts in seizure-activity that are observed in some cases should reduce the risk of over-treatment caused by inappropriate changes in medication. Methods The analyses were performed using Poisson hidden Markov models (HMMs), both Bayesian and non-Bayesian, implemented using Markov chain Monte Carlo and the expectation-maximisation algorithm, respectively. A defining feature of the models, as applied to epilepsy, is the assumed existence of two or more pathological states, with state-specific Poisson rates, and random transitions between the states. Posterior predictive simulation was used to assess the validity of the Bayesian HMMs. Results The results are presented in the form of state transition probability and Poisson rate estimates (i.e., the primary HMM parameters), together with information derived from these primary parameters. State-specific mean-duration (sojourn time) estimates and sojourn-time complementary cumulative probability distributions are the main focus. HMM analyses are presented for three children that differed markedly in their seizure behaviour. The first is characterised by an extreme seizure count on one occasion; the second underwent a spontaneous decrease in seizure activity during the observation period; the third seizure-count time trajectory is characterised by a gradual change in mean seizure activity. We show that, despite their considerable differences, each of the observed seizure-count trajectories can be treated adequately using an HMM. Conclusions The study demonstrates that clinically relevant information can be obtained using HM modelling in three cases with markedly different seizure behaviour. The resulting subject-specific statistics provide useful clinical insights which should aid those engaged in clinical decision making.

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3