Crystal structure of Pseudomonas aeruginosa FabB C161A, a template for structure-based design for new antibiotics

Author:

Yadrykhins'ky VladyslavORCID,Georgiou CharisORCID,Brenk RuthORCID

Abstract

Background: FabB (3-oxoacyl-[acyl-carrier-protein] synthase 1) is part of the fatty acid synthesis II pathway found in bacteria and a potential target for antibiotics. The enzyme catalyses the Claisen condensation of malonyl-ACP (acyl carrier protein) with acyl-ACP via an acyl-enzyme intermediate. Here, we report the crystal structure of the intermediate-mimicking Pseudomonas aeruginosa FabB (PaFabB) C161A variant. Methods: His-tagged PaFabB C161A was expressed in E. coli Rosetta DE3 pLysS cells, cleaved by TEV protease and purified using affinity and size exclusion chromatography. Commercial screens were used to identify suitable crystallization conditions which were subsequently improved to obtain well diffracting crystals. Results: We developed a robust and efficient system for recombinant expression of PaFabB C161A. Conditions to obtain well diffracting crystals were established. The crystal structure of PaFabB C161A was solved by molecular replacement at 1.3 Å resolution. Binding site comparison between PaFabB and PaFabF revealed a conserved malonyl binding site but differences in the fatty acid binding channel. Conclusions: The PaFabB C161A crystal structure can be used as a template to facilitate the design of FabB inhibitors.

Funder

Norges Forskningsråd

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference28 articles.

1. Antibacterial Drug Discovery in the Resistance Era.;E Brown;Nature.,2016

2. Review on Antimicrobial Resistance. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations.;J O’Neill,2016

3. Bacterial Fatty Acid Metabolism in Modern Antibiotic Discovery.;J Yao;Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids.,2017

4. Defining the Core Essential Genome of Pseudomonas Aeruginosa.;B Poulsen;PNAS.,2019

5. Essential Genome of Pseudomonas Aeruginosa in Cystic Fibrosis Sputum.;K Turner;PNAS.,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3