Abstract
Background: In the last decade, there has been much interest in the area of solid polymer electrolyte (SPE) to address the issues of electrolyte leakage and evaporation in electrochromic devices (ECD). ECD is a state-of-the-art technology having the ability to change from transparent state to opaque state under the influence of a small applied voltage for energy saving applications. Methods: In this work, tungsten oxide (WO3) films were fabricated via the sol-gel spin-coating method. Subsequently, ECDs were assembled based on SPE and liquid polymer electrolyte (LPE), respectively using indium doped tin oxide (ITO) coated glass as conducting electrodes and WO3 films as working electrode. Results: Cyclic voltammetry (CV) results revealed reduced ionic conductivity of conducting ions in SPE based ECD (SECD) owing to increased viscosity by addition of PMMA. However, lesser time was required for the colouration process. LPE based ECD (LECD) showed higher colouration efficiency (CE) compared to its SECD counterpart. This is attributed to its larger optical modulation. Conclusions: This work presents a comparison between the performance of LECD and SECD in terms of electrochromic (EC) and optical properties. They were analysed through CV, chronoamperometry (CA) and ultraviolet-visible (UV-Vis) spectrophotometer. Furthermore, this work provides an insight on the employment of solid-state electrolytes in ECDs in view of the persistent leakage and evaporation problems in ECD implementation.
Funder
Ministry of Higher Education, Malaysia
Multimedia University
Subject
General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献