Author:
Dowling Catríona M.,Walsh Dara,Coffey John C.,Kiely Patrick A.
Abstract
Quantitative real-time reverse-transcription polymerase chain reaction (RT-qPCR) remains the most sensitive technique for nucleic acid quantification. Its popularity is reflected in the remarkable number of publications reporting RT-qPCR data. Careful normalisation within RT-qPCR studies is imperative to ensure accurate quantification of mRNA levels. This is commonly achieved through the use of reference genes as an internal control to normalise the mRNA levels between different samples. The selection of appropriate reference genes can be a challenge as transcript levels vary with physiology, pathology and development, making the information within the transcriptome flexible and variable. In this study, we examined the variation in expression of a panel of nine candidate reference genes in HCT116 and HT29 2-dimensional and 3-dimensional cultures, as well as in normal and cancerous colon tissue. Using normfinder we identified the top three most stable genes for all conditions. Further to this we compared the change in expression of a selection of PKC coding genes when the data was normalised to one reference gene and three reference genes. Here we demonstrated that there is a variation in the fold changes obtained dependent on the number of reference genes used. As well as this, we highlight important considerations namely; assay efficiency tests, inhibition tests and RNA assessment which should also be implemented into all RT-qPCR studies. All this data combined demonstrates the need for careful experimental design in RT-qPCR studies to help eliminate false interpretation and reporting of results.
Subject
General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献