Cicada minimum age tree: Cryptic speciation and exponentially increasing base substitution rates in recent geologic time

Author:

Osozawa SoichiORCID,Wakabayashi JohnORCID

Abstract

We developed a new time-calibrated tree incorporating primarily endemic along with some cryptic Ryukyu islands cicada data, following the recent publication of global cicada data by Marshall et al. (2018), Łukasik et al. (2018), Simon et al. (2019), Price et al. (2019), and Hill et al. (2021).  A total of 352 specimens were analyzed using BEAST v1. X software with a relaxed clock model. Fossil calibrations as old as Triassic were adopted largely following Johnson et al. (2018) and Moulds (2018), and a Quaternary geological event calibration was adopted following Osozawa et al. (2012, 2021b) and input into BEAST v1. X. Our timetree suggests that Tettigarctidae had a cicada basal lineage as old as 200.63 Ma, with Derotettiginae the next oldest lineage at 99.2 Ma. Tibicininae is a sister of the remaining subfamilies of Tettigomyiinae, Cicadettinae, and Cicadidae, and their species level differentiation and radiation began at 40.57 Ma. The Cicadinae clade consists of specific tribes with parapheletic relationship, and the vicariance and adaptive radiation generated many cryptic species in each tribe. We estimated base substitution rate as a function of age, and the result strongly indicates an exponential increase of base substitution rate in recent geologic time. The consequent increase in cicada biodiversity, including generation of cryptic species in the Ryukyu Islands and surroundings, may have been driven by the generation and spreading of C4 grasses and coeval Quaternary climate change.

Funder

Japan Society for the Promotion of Science

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference81 articles.

1. Paleontological evidence to date the tree of life.;M Benton;Mol. Biol. Evol.,2007

2. Constraints on the timescale of animal evolutionary history.;M Benton;Palaeontol. Electron.,2015

3. Insects from the Buntsandstein of Lower Franconia and Thuringia.;A Bashkuev;Paläontol. Z.,2012

4. BEAST 2: A software platform for Bayesian evolutionary analysis.;R Bouckaert;PLoS Comput. Biol.,2014

5. (2019) BEAST 2: An advanced software platform for Bayesian evolutionary analysis.;R Bouckaert;PLoS Comput. Biol.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3